

wwwmatthes.in.tum.de

Motivation

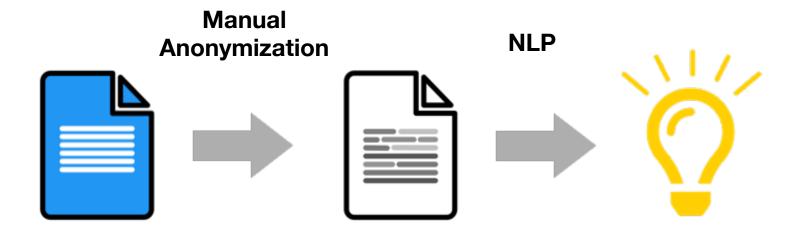
Problem Statement

Approach

Research Questions

Schedule

NLP for Legal Documents (today)



Original legal texts

- Court decisions
- Contracts
- Accusatorial texts
- Not published

Anonymized legal texts

- No personal information
- Published

Knowledge

- Legal research
- Contract review
- Document automation
- Legal advice
- etc.

Motivation

Problem Statement

Approach

Research Questions

Schedule

Anonymization of Legal Texts

Example for court decisions:

- Den Angeboten auf der Webseite ... liegt das Konzept der Produktdetailseite zugrunde. Dabei wird für jedes über die ...-Plattform angebotene Produkt jeweils nur eine Produktdetailseite angezeigt; jedes Produkt enthält eine spezifische ...-Produktidentifikationsnummer (...) zugewiesen.
- **Expensive manual** anonymization process
 - Leads to rare publications of legal texts
 - Results in few data sets
- Development of an automated anonymization process
- Only anonymized data sets available
 - Anonymization training without non-anonymized data sets

Anonymization

Motivation

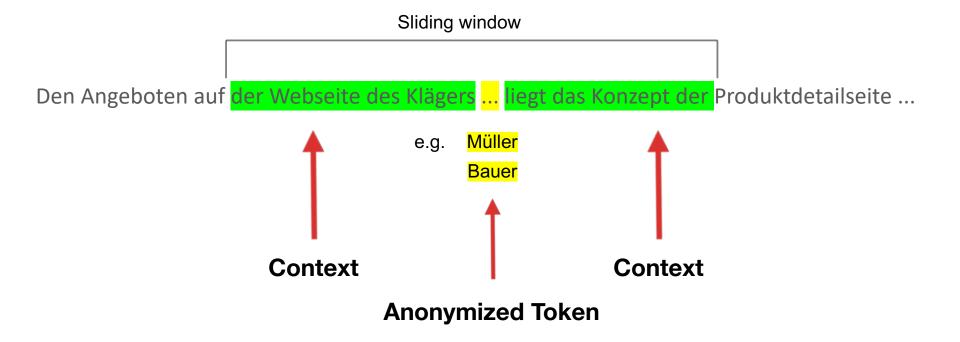
Problem Statement

Approach

Research Questions

Schedule

Context-based Analysis



- Statement: **Sensitivity** of token **depends only on context**, not the actual content itself
- Anonymized token in legal texts are annotated (e.g. by "...") and can be detected
- Anonymization model may be trained using anonymized data

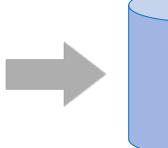
NLP: Sensitivity Prediction of Token

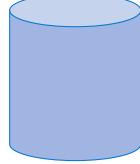
Preprocessing

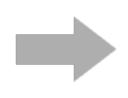
- Text extraction
- Tokenization
- Anonymization Detection

Model Training

- Embedding of token context without the token itself
- Prediction if the token has been anonymized (high sensitivity)







Anonymized legal texts

- Raw data as PDF/RTF
- e.g. Court Decisions of 'LG Munich'

Tokenized Corpus

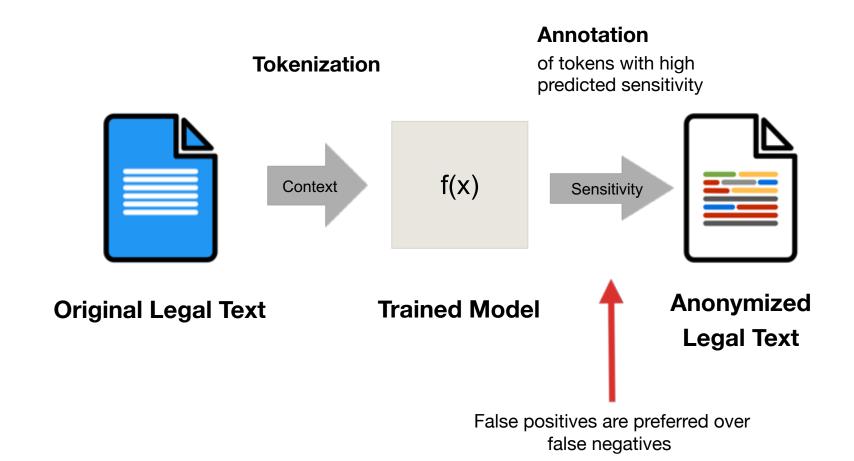
 Annotated anonymized tokens like '...' or 'B.'

Trained Model

Inputs: Context

Outputs: Sensitivity

Application of the Trained Model



Approach

1. Literature research

- existing suitable NLP models
- existing frameworks and implementations

2. NLP model training on anonymized court decisions

- Fetching and preprocessing of court decision documents
- Model training and hyperparameter fitting

3. Evaluation of the model

- using court decision examples
- using rewritten anonymized legal texts (e.g. using randomized NE replacement)

4. Application

Implementation of the anonymization process using trained NLP model

Motivation

Problem Statement

Approach

Research Questions

Schedule

13

Research Questions

Is the textual context of a token within legal texts enough to predict the sensitivity of this token?

- Classical anonymization solutions in other domains additionally use NER (named entity recognition)
 - Improves stability
 - But there is no non-anonymized data
- Additional data, which may be taken into account:
 - > the **commonness** of words in legal texts
 - e.g. words like mit or Kläger probably have a low sensitivity
 - document metadata such as title, court, etc.

Research Questions

How can placeholders be detected in anonymized legal documents?

- Examples for possible anonymization patterns for the word 'Schamberger':

 - o S...
 - o S...

 - o "S..."
 - 0 S
 - S

Research Questions

Which machine learning approaches be used to automate anonymization using only anonymized data?

- Examples for contextual embeddings: BERT, ELMO, GPU, CMU
- Alternative classical embedding: Word2vec, GloVe
- Possible architectures: Convolution, RNN, Attention
- Possible sliding window sizes:
 - Fixed number of words
 - Full sentences
 - Full paragraphs

Motivation

Problem Statement

Approach

Research Questions

Schedule

17

Schedule

	June	July	August	September	October
Literature Research	Start	– 2nd of August			
Implementation		1st of July	– 13th of Septembe	r	
Model Training			15th of July – 4th o	of October	
Evaluation			5th of Augus	t – 4th of October	
Writing			5th	of August – End	
Review				16th of Se	ep. – End

18

Tom Schamberger

Technische Universität München Faculty of Informatics Chair of Software Engineering for Business Information Systems

Boltzmannstraße 3 85748 Garching bei München

Tel +49.89.289.17132 Fax +49.89.289.17136

matthes@in.tum.de wwwmatthes.in.tum.de

